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coordinates Ulk , i.e. Ulk--~.0 at rk. The consequences 
of this situation concerning the meaning of the 
positional parameters are discussed elsewhere 
(Scheringer, 1986). 

In establishing anharmonic p.d.f.'s, parameters of 
an 'effective potential' or 'isolated-atom potential' are 
often used (Willis & Pryor, 1975, ch. 5; Zucker & 
Schulz, 1982). Our basic result that any atomic p.d.f. 
has to be conceived as a marginal p.d.f, of the crystal 
p.d.f, gives rise to the following interpretation: the 
parameters of the effective potential describe the 
motions of an atom as if it would vibrate under this 
potential, no matter where the remaining atoms of  the 
crystal are actually located (but within the limits set 
by the crystal p.d.f.). Note the difference of this inter- 
pretation from the common interpretation with the 
Einstein model (Willis & Pryor, 1975, p. 12) where 
the atoms are assumed to vibrate independently. 

I am indebted to Professor Dr V. Mammitzsch, 
Mathematisches Institut der Universit~it Marburg, for 
a discussion on the treatment of dependent variables 
in statistics. I thank Dr B. T. M. Willis, Oxford, and 
Professors A. J. C. Wilson, Cambridge, H. B. Biirgi, 
Bern, W. Prandl, Tiibingen, and V. Schomaker, 

Seattle, for their constructive criticism of earlier 
versions of this paper. 
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Abstract 

In the harmonic approximation of thermal vibrations, 
the probability density function (p.d.f.) of a crystal 
is discussed and the p.d.f, of a single atom is derived. 
It is shown that Bragg intensities and temperature 
factors are affected by statistical dependences among 
the vibrational coordinates but not the covariances 
(correlations) of the atoms in the crystal. The relation 
between statistical dependences and interatomic force 
constants is established, and effective potential 
parameters are derived as functions of the interatomic 
force constants. It is shown that a decrease in the 
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diagonal elements or an increase in the off-diagonal 
elements of statistical dependence increases the 
mean-square amplitudes (u 2) of the atoms. An 
increase in statistical dependence between different 
coordinates of space always increases the (u2). Some 
experimental results ((u2)) in different types of struc- 
tures are interpreted with simple models of statistical 
dependence. 

1. Introduction 

The effect of coupling the motions of different atoms 
in crystals on Bragg intensities and atomic vibration 
tensors is difficult to analyse. Vibration tensors deter- 
mined by means of diffraction experiments support 
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the opinion that such effects exist. In particular, the 
thermal ellipsoids of (nearly) rigid molecules form 
regular patterns that can be interpreted on the 
assumption of molecular rigid-body motion, i.e. 
highly correlated motion of atoms in the molecule; 
see e.g. Cruickshank (1956), Burns, Ferrier & 
McMullan (1967), Schomaker & Trueblood (1968), 
Willis & Pryor (1975, Figs. 6.3 and 6.4). Lattice- 
dynamical considerations give a general relation 
between atomic vibration tensors and dynamical 
matrices (Scheringer, 1972a, 1973), but do not give 
information on the direction in which interatomic 
coupling affects the vibration tensors. In the preced- 
ing paper (Scheringer, 1987) - hereafter I - we have 
derived the temperature factor with the aid of statis- 
tical methods and have included the effects of inter- 
atomic coupling. Here we restrict ourselves to the 
harmonic approximation of atomic motions, and thus 
gain the advantage that all distributions are Gaussian. 
We then obtain matrices that are real, symmetric and 
positive definite and that can be subjected more 
readily to a mathematical treatment than the complex 
Hermitian matrices of lattice dynamics. The purpose 
of this paper is: 

(1) to distinguish between two related properties 
of 'interatomic coupling', namely statistical depen- 
dences and covariances (correlations) among the 
vibrational coordinates of different atoms in the 
crystal; 

(2) to establish the relationship between these two 
properties in the harmonic approximation, and to 
find their relation to the atomic vibration tensors; 

(3) to establish the relationship between statistical 
dependences, interatomic force constants (potential 
parameters of the crystal) and 'effective potential 
parameters' of individual atoms; and 

(4) to determine cumulative effects of statistical 
dependences on the atomic vibration tensors. 

2. Statistical dependences, covariances and their 
relation to atomic vibration tensors 

We begin by setting up the probability density func- 
tion (p.d.f.) f (u)  of the crystal and determining the 
marginal p.d.f.'s fk(Uk) of the atoms, u denotes the 
3 n N - 6  independent vibrational coordinates of the 
atoms in the crystal (N ceils in the crystal, n atoms 
in each cell), and Uk the three vibrational coordinates 
of the atom k; In thermal equilibrium, a poly- 
dimensional harmonic oscillator has a Gaussian dis- 
tribution for its vibrational coordinates; this is also 
true in the regime of quantum statistics (Bloch, 1932). 
The crystal p.d.f, is hence a (3nN-6)-dimensional  
Gaussian function, i.e. 

f ( u ) = ( 2 7 r ) - M ( d e t V ) l / 2 e x p ( - ½ u r V u ) ,  (1) 

where M - - ( 3 n N - 6 ) / 2 .  V is of order 3 n N - 6  and 
is symmetric and positive definite, as is V -1. By 

definition, statistical dependence between the 3 n N -  
6 independent vibrational coordinates is expressed 
explicitly in the off-diagonal elements of V, and the 
covariance is explicitly expressed in the off-diagonal 
elements of V -1. Thus, in the harmonic approxima- 
tion, statistical dependences and covariances are 
related through the matrix inversion V - V  -1. If the 
atoms in each cell are counted in the same sequence 
and in one cell after the other, V and V -1 exhibit the 
periodicity of the crystal, neglecting the three atoms 
which carry the six dependent coordinates. Since the 
crystal is periodic, all pairs of cells (atoms) located 
relative to each other with regard to the same distance 
and orientation must have the same 3n x3n  (3x3)  
off-diagonal blocks. Symmetry elements present in 
the crystal can impose additional restrictions..Since 
the crystal should not disintegrate, single atoms or 
cells cannot vibrate independently. Hence, V and V -1 
cannot be 3 x 3 or 3n x 3n block-diagonal and must 
have a minimum band structure. However, the atoms 
may vibrate independently in the three directions of 
space and thus a block-diagonal form of V and V -~ 
(three blocks only) is allowed with respect to the 
vibrations in different directions of space. 

The p.d.f, of an atom k in any cell l, fk(Uk), i.e. a 
three-dimensional marginal p.d.f, of f(u),  is also 
Gaussian and its covariance matrix is a 3 x 3 diagonal 
block of V -~ (Chatfield & Collins, 1980, p. 98). This 
block is the vibration tensor Uk of the atom k. Since, 
with the inversion of V, all elements of V contribute 
to V -1, the vibration tensors Uk receive contributions 
from all elements of V. In this way statistical depen- 
dences (off-diagonal blocks of V) are transferred in 
a unique way to the vibration tensor and thus deter- 
mine their numerical values. [More generally, the 
uniqueness is guaranteed by the fact that 1(9)- 
equation (9) of paper I - is mathematically 
unequivocal in the direction f (u ) )A(Uk)  for any cell 
l.] From I(12) and I(13), Bragg intensities are 
unequivocally described by structure factors (tem- 
perature factors); hence Bragg intensities also depend 
unequivocally on the statistical dependences of the 
vibrational coordinates of different atoms in a given 
crystal. Also, from I(12) and I(13), only the Fourier 
transforms of the marginal p.d.f.'s fk(Uk) enter into 
the expression for the Bragg intensities. Hence only 
the 3 x3 diagonal blocks of V -~, i.e. the vibration 
tensors Uk, can be determined from Bragg intensities. 
The 3 x 3 off-diagonal blocks of V -~, i.e. the covari- 
ances, and hence V and f(u),  remain unknown. Here 
we see that I(9) is mathematically equivocal in the 
direction fk(Uk) ~f (u) .  

3. Statistical dependences and potential parameters 

Since Gaussian p.d.f.'s are equal to Boltzmann func- 
tions expanded to quadratic terms, simple relations 
result in the high-temperature approximation 
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(Boltzmann statistics). From (1) we obtain 

kaTV= P{Cp( lk, l'k')}, (2) 

where the (3nN-6)  x (3nN-6)  symmetric and posi- 
tive-definite matrix P contains the interatomic force 
constants ¢p(lk, l'k'), i.e. the potential parameters as 
used in lattice dynamics, k8 is Boltzmann's constant 
and T the absolute temperature. The diagonal ele- 
ments of P, ~,(Ik, lk), i -- 1, 2, 3, l = 1 , . . . ,  N, k = 
1 , . . . ,  n, are not real force constants but are calcu- 
lated from the condition of translational invariance 
(Scheringer, 1974). In quantum statistics, the 
Boltzmann distribution no longer holds but (1) does. 
Hence, the simple relation (2) is lost: the off-diagonal 
elements of V thus denote the statistical dependences 
as they arise due to the interatomic forces present in 
the crystal, and the diagonal elements of V essentially 
denote how strongly an atom 'is bound to its site'. 

'Effective' or 'isolated-atom' potentials are of inter- 
est because they can be derived from diffraction data. 
[They are, however, mainly used for a discussion of 
anharmonic motion (Willis & Pryor, 1975, ch. 5).] 
The effective potential for a single atom is defined as 
the crystal potential for all atoms in the crystal. Hence, 
for a marginal p.d.f, of any dimension 3 m, we define 
a 3 m x 3 m matrix Ve~ corresponding to V in the crystal 
p.d.f. (1). Further, with Chatfield & Collins (1980, p. 
98), we find, as in §2, 

Veff = [3m x 3m block {V-l}] -1 (3) 

and, in the high-temperature approximation, 

k~TVef~ = Pe~ = [3m x 3m block {P-~}]-~, (4) 

where 'block' in (3) and (4) denotes a 3 m x 3 m  
diagonal block cut out from V -~ or P-~ respectively. 
For m = 1 the parameters of the isolated-atom poten- 
tial (Vef~=U~ 1) are obtained, and for m = n the 
parameters of the unit-cell potential are obtained. For 
m =2, Pef~ describes the joint potential parameters 
for two atoms. An alternative relation to (4) can be 
obtained by harmonic lattice dynamics, starting from 
Scheringer's (1972a) equation (10b), i.e. 

Pen=[3mx3mblock{(1 /N)~ ' .L- ' (q)}] - ' ,  (5) 
q 

where L(q) is the 3n x 3n dynamical matrix of the 
wave vector q, and m - n. Obviously, there is no direct 
relation between Pen and any interatomic force con- 
stants @(Ik, l'k'); however, owing to the repeated 
matrix inversion, the total of the interatomic force 
constants enters into Pee~. Only for m = 1, i.e. an 
isolated-atom potential, can all parameters of Pen be 
determined from diffraction data: Pen=kBTVeef = 
kTU-~ ~. In quantum statistics (4) and (5) are no longer 
valid but (3) still holds. The off-diagonal terms of Ven 
thus denote the statistical dependences among the 

vibrational coordinates of the marginal p.d.f.; the 
effect of the remaining atoms is taken into account 
according to (3) but is not explicitly manifest. The 
diagonal elements of Vef~ essentially denote how 
strongly an atom 'is bound to its site'. 

4. The effect of statistical dependences on the mean- 
square amplitudes 

We discuss the effect of the elements of V and Ve~ 
on the mean-square amplitudes U" of the atoms by 
giving some inequalities and discussing their physical 
meaning. Firstly, we recall that the diagonal elements 
of V -~ and Ve-d are equal to the U". Hence the U" 
are inversely proportional to the absolute magnitudes 
of V and Ve~. The magnitude of the diagonal elements 
relative to the magnitude of the off-diagonal elements 
is important in assessing the effects of statistical 
dependences. The following inequalities are derived 
(see the proofs in the material for deposit*). 

We compare two matrices V and Ven which have 
the same off-diagonal elements but with larger or 
smaller diagonal elements. Then 

U"(V diag. larger) < U"(V diag. smaller), (6) 

det V(V diag. larger) -> det V(V diag. smaller) (7) 

(see proofs 5 and 6*). Here V can be replaced by Vef~. 
Equation (7) also holds for detV with VeX within 
brackets. If all diagonal elements of one matrix are 
larger, the unequal sign holds, otherwise either sign 
may hold. Now we compare two matrices V which 
have the same (block) diagonals. In one of the 
matrices, denoted by 'general', further off-diagonal 
elements are added. 

U"(V diagonal) < U"(V general), (8) 

U"(V block-diag.) <- U"(V general), (9) 

det V(V block-diag.) > det V(V general) (10) 

(see proofs 1 to 4*). V may be replaced by Ve, in (8) 
to (10). We assume that V can also be replaced by 
Ve~ in the brackets of (10) only but are unable to 
prove it. The unequal signs in (8) to (10) apply if the 
addition of elements is 'significant', the equal signs 
apply if it is 'not significant'. The meaning of 'sig- 
nificant' in this context is explained in the material 
for deposit.* Equation (8) is only meaningful for Ve~ 
since V cannot be diagonal (crystal stability). V can, 
however, be block-diagonal with three blocks refer- 
ring to the three directions of space. 

* The proofs of inequalities (6) to (10) have been deposited with 
the British Library Document Supply Centre as Supplementary 
Publication No. SUP 43917 (7 pp.). Copies may be obtained 
through The Executive Secretary, International Union of Crystal- 
lography, 5 Abbey Square, Chester CH1 2HU, England. 
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Table 1. Mean-square amplitudes in benzene and graphite 

For benzene, only the internal modes of the molecule are taken into account. The in-plane and isotropic averages were calculated from 
Johnson (1970). 

(U 2) (A 2) 
C-C 

distance (,~,) I n -p l ane  Out-of-plane Iso t ropic  Reference 
Benzene 1.399 (1) 0.0011 0.0017 0.0013 LB, J 
Graphite 1.421 (3) 0.0033 (1) 0.0140 (3) CTS 

References: LB Landolt-BiSrnsiein (1976); J Johnson (1970); CTS Chen, Trucano & Stewart (1977). 

det V determines the height of the crystal p.d.f, f (u)  
at u = 0. Thus (7) and (10) imply that the maximum 
o f f (u )  is lowered and f(u)  is broadened if the situ- 
ation is changed from left to right in the sense of 
these equations. This means that a reduction of the 
diagonal elements of V [inequalities (6) and (7)] or 
an addition of statistical dependences [inequalities 
(8) to (10)] broadens the crystal p.d.f, and increases 
the mean-square amplitudes U ii. In particular, an in- 
crease of statistical dependence of the atomic motions 
in different directions of space always increases the 
U", since diagonal elements of V or Vef~ are not 
involved. The increase noted for the U" also holds 
for the eigenvalues A~ of the vibration tensors since 
U I I +  U22.1t- U33=/~1 + ~2-1t- ~3 , 

As for the physical meaning of the elements of V 
and Vef~ discussed in § 3, the results (6) to (10) may 
be interpreted as follows: A reduction of diagonal 
elements of V [inequalities (6) and (7)] implies that 
the atoms become less strongly 'bound to their sites' 
and thus the mean-square amplitudes will be 
increased. An addition of off-diagonal elements of V 
[inequalities (8) to (10)] means that further linkages 
with other atoms are established. This induces further 
in-phase and out-of-phase motions among different 
atoms and the mean-square amplitudes will be 
increased. Thus the algebraic results (6) to (10) appear 
to make sense physically. 

5. The model of independent atomic motions 

This model (Busing & Levy, 1964; Scheringer, 1972b) 
is known to give very large values of bond-length 
correction which are not usually considered realistic. 
It is interesting to see that the model of independent 
motion requires a structure of matrix V of highly 
unlikely occurrence. The model of independent 
(uncorrelated) motions means that V -~ has a gap 
structure in each of the 3n x 3n diagonal cell blocks 
l, l =  1 , . . . ,  N, with zero 3 x 3  covariance blocks 
(gaps) for all pairs of atoms that are assumed to 
vibrate independently. In building up the framework 
of a crystal, the primary requirements are the inter- 
atomic interactions (force constants), here the ele- 
ments of V. It is quite unlikely that V is constrained 
in such a way that V -~ will assume the gap structure 
described above, unless this is required by symmetry. 

Another type of independent motion results if an 
atom vibrates independently with respect to the three 
directions of space. In this case the vibration tensor 
Uk is diagonal. Since Uk is always diagonal in the 
coordinate system of its principal axes, truly indepen- 
dent motions are obtained only if more than one 
tensor Uk is diagonal in any (Cartesian) reference 
system. (Writing V and V -~ implies that the same 
coordinate system is used for all atoms.) As in the 
case above, it is quite unlikely that V -1 assumes a 
gap structure (i.e. several Uk'S diagonal), unless this 
is enforced by site symmetry. This is in agreement 
with experimental results. 

6. Mean-square amplitudes in benzene and graphite 

We give an interpretation of the large differences in 
the mean-square amplitudes (u 2) of the C atoms in 
graphite and in the isolated benzene molecule (not 
crystalline benzene). Here we consider the graphite 
crystal and the benzene molecule as two similar struc- 
tural systems of different size performing only internal 
motions. The (u2)'s of the benzene molecule were 
determined from infrared and Raman data at room 
temperature [no error estimates given (Johnson, 
1970)], and the vibration tensors of the graphite crys- 
tal from a structure investigation at room temperature 
(Chen, Trucano & Stewart, 1977). The experimental 
(u2)'s are listed in Table 1. The C-C bond lengths in 
graphite are larger by 0.022(4) A (1.6% of the bond 
length). An assessment of the C-C force constants 
by means of Badger's rule (see e.g. Siebert, 1961) 
shows that the force constants in graphite and ben- 
zene differ by about 1% of their magnitude. Hence, 
the (u2)'s in graphite and benzene should not differ 
appreciably by more than 1% owing to the difference 
of the C-C bond lengths (force constants). However, 
the ratio of (u 2) actually observed is much larger than 
1.01, namely 0.0033/0.0011=3.0 for vibrations 
parallel to the graphite layers, and 0.0140/0.0017 = 
8.2 for vibrations perpendicular to the layers; see 
Table 1. The large increase of(u :) in graphite is caused 
by the establishment of long-range interactions in the 
graphite crystal. To understand this, we imagine 
graphite as composed of many six-C-atom units as 
they occur in benzene. The 18 x 18 covariance matrix 
of the six C atoms (obtained from the singular 36 x 36 
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covariance matrix of all atoms in benzene) is not 
singular; its inverse is Vefr (C atoms in benzene). If 
we put many such 18 x 18 Veff matrices together in a 
block-diagonal matrix, we have a model for a large 
ensemble of uncoupled six-C-atom units (as they 
vibrate in benzene). If we connect the units and so 
establish a graphite crystal, we must fill up the off- 
diagonal blocks. From (9), the (u 2) of the C atoms 
will be enlarged by this procedure, the more so as 
more elements are added (long-range coupling) and 
the larger the elements. The large value of(u 2} perpen- 
dicular to the layers (0.0140 A 2) is caused by the fact 
that the interlayer interactions are weak [inequality 
(6), Vii small] compared with the interactions within 
the layers (Vii large). 

The observed (u2}'s in benzene and graphite can, 
of course, be qualitatively explained also by means 
of dynamics. Since graphite is a much larger system 
than benzene, normal modes with very large 
wavelengths can occur in graphite. The acoustic 
branches of these waves give rise to large (u2}'s of 
the C atoms, which are not possible in the isolated 
benzene molecule. 

7. Molecular crystals with rigid-body motions 

Thermal ellipsoids of atoms in (nearly) rigid 
molecules form regular patterns which can be inter- 
preted under the assumption of rigid-body motions. 
We consider the contributions to the V matrix corre- 
sponding to internal vibrations (IV) and external 
vibrations (EV) of the molecule separately and show 
that the vibration tensors Uk are primarily governed 
by the EV. To a good approximation, we can assume 
that the IV and EV are fully separated. The IV of 
different molecules are uncoupled (by definition) but 
the EV are coupled so that the crystal does not disin- 
tegrate. Since the frequencies of the IV are much 
larger than those of the EV, the V~j corresponding to 
the IV are larger than those of the EV by at least one 
order of magnitude. In V -I the order of magnitude 

is reversed: the EV elements, at least those on the 
diagonal of V -1, are large. Thus the vibration tensors 
Uk are primarily governed by the EV whereas the IV 
contribute only a 'background' to the 3 m x 3 m  
diagonal blocks of V -~ (m atoms in the molecule) 
and so prevent these blocks from becoming singular 
of rank six. 

I am indebted to Professor Dr V. Mammitzsch, 
Mathematisches Institut der Universit~it Marburg, 
for having established the mathematical proofs 1-4 
given in the material for deposit. I thank Dr B. T. M. 
Willis, Oxford, Professors V. Schomaker, Seattle, 
W. Prandl, T/ibingen, and Dr Elisabeth Rossmanith, 
Hamburg, for having expressed constructive criticism 
on some earlier versions of this paper. 
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